

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	drive-casa 0.7.5 documentation

drive-casa

Version 0.7.5

Welcome to drive-casa’s documentation. If you’re new here, I recommend you
start with the introduction, or you could jump straight
to the example.

Contents:

	Introduction to drive-casa
	Rationale

	Project status, licence and acknowledgement

	Installation

	Developer setup

	Documentation

	Usage

	A Brief Example

	See also

	drivecasa API reference
	drivecasa.interface - Casapy interface class

	drivecasa.casa_env - Shell environment configuration

	drivecasa.commands - Convenience routines for building command lists

	drivecasa.utils - Miscellaneous subroutines

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	drive-casa 0.7.5 documentation

Introduction to drive-casa

A Python package for scripting the NRAO CASA [http://casa.nrao.edu/] pipeline routines (casapy).

drive-casa provides an interface to allow dynamic
interaction with CASA from a separate Python process, allowing utilization
of CASA routines alongside other Python packages which may not easily be
installed into the casapy environment.

For example,
one can spawn an instance of casapy, send it some data reduction
commands to run (while saving the logs for future reference),
do some external analysis on the results,
and then run some more casapy routines.
All from within a standard Python script, and preferably from a virtualenv [http://www.virtualenv.org/].
This is particularly useful when you want to embed use of CASA within a larger
pipeline which uses external Python libraries alongside CASA functionality.

drive-casa can be used to run plain-text casapy scripts
directly; alternatively the package includes a set of convenience
routines which try to adhere to a consistent style and make it easy to chain
together successive CASA reduction commands to generate a casapy command-script
programmatically; e.g.

importUVFITS ->
Perform Clean on resulting MeasurementSet

is implemented like so:

ms = drivecasa.commands.import_uvfits(script, uvfits_path)
dirty_maps = drivecasa.commands.clean(script, ms, niter=0, threshold_in_jy=1,
 other_clean_args=clean_args)

Rationale

Newcomers to CASA [http://casa.nrao.edu/] should note that it is trivial to run
simple Python scripts within the casapy environment, or even to launch
casapy into a script directly from the command line, e.g.:

casapy --nologger -c hello_world.py

While this mostly works fine from a command line or within a
shell script, things start to get messy if you want to run CASA functions
alongside routines from external Python libraries.

casapy uses its own bundled-and-modified copy of the Python interpreter[*],
so a first thought might be to try and install external libraries into the CASA
environment directly, and then run everything via the casapy interpreter.
Thanks to recent efforts [https://github.com/radio-astro-tools/casa-python],
this is now possible.
However it still breaks the virtualenv [http://www.virtualenv.org/] workflow,
and requires that your external Python modules are compatible with the
CASA-bundled version of Python.

Alternatively one can try to ‘break-out’ the casapy modules from the
CASA environment, but this also requires binary compatibility and some
monkeying around with embedded paths as detailed in
this post from Peter Williams [http://newton.cx/~peter/2014/02/casa-in-python-without-casapy/].

At a pinch, you might be tempted to try dumping CASA command scripts to file
and then spawning a casapy instance via subprocess [https://docs.python.org/2/library/subprocess.html]. Don’t. This was
how drive-casa got started, and I quickly ran into issues with casapy
filling the stdin / stdout pipe buffers and causing the whole process to
freeze up.

Which leads us to the drive-casa approach - emulate terminal interaction
with casapy via use of pexpect [http://pypi.python.org/pypi/pexpect/]. drive-casa can be installed
along with any other Python packages in the usual Python package fashion,
since we only interface with casapy indirectly via the command line.
The downside is that
data has to be written to file to transfer it between the standard Python script
and the casapy environment, but it brings some added benefits:

	Error handling

	CASA tasks do not, as far as I can tell, return useful values as standard
(or even throw exceptions). Instead, since the over-riding assumption is that
the package will be run in interactive mode,
all information is written to stderr as part of the logging output, making it
hard to programmatically verify if a task has completed sucessfully.
drive-casa attempts to solve this by parsing the log output for ‘SEVERE’
warnings - the user may then choose to throw an exception when
it is sensible to do so.

	Logging / reproducibility

	If scripting the reduction of large amounts of data in batches, it is
often useful to record logging information along with the data output,
both for purposes of debugging and data provenance.
As far as I can tell, CASA does not provide an interface to control or
redirect the logging output once the program has been instantiated.
drive-casa can work-around this issue by simply restarting CASA with a fresh
logging location specified for each dataset.

	[*]	This provides dedicated functionality, such as displaying a logging
window and providing access to plotting tools - useful in interactive
usage but undesirable from a scripting perspective.

Project status, licence and acknowledgement

drive-casa is BSD licensed [https://github.com/timstaley/drive-casa/blob/master/LICENCE.txt].
The package is now in use by a few people
other than myself, and can reasonably be used ‘in production’.
Any bug-fixes or interface changes should be accompanied by a version increment,
so you can be assured of stability by specifying the PyPI version.
I’d be interested to hear if others find it useful, and welcome
any bug reports or pull requests. Any major changes should be recorded in the
change-log [https://github.com/timstaley/drive-casa/blob/master/CHANGES.md].

If you make use of drive-casa in work leading to a publication, I ask that
you cite Staley and Anderson (2015) [http://labs.adsabs.harvard.edu/adsabs/abs/2015arXiv150508123S/] and the relevant
ASCL entry [http://ascl.net/1504.006].

Installation

Requirements:

	A working installation of casapy.

	pexpect [http://pypi.python.org/pypi/pexpect/]
(As listed in requirements.txt, installed automatically when using pip.)

drive-casa is pip installable, simply run:

pip install drive-casa

Warning

Multiprocessing bug with pexpect 3.3:

During 2015, the default version of pexpect available on PyPI was 3.3.
If you wish to use drive-casa in a parallel-processing context,
you should beware of this bug [https://github.com/pexpect/pexpect/issues/86] which means
pexpect 3.3 is broken under multiprocessing.
Fortunately, both the older pexpect 2.4 and the latest pexpect 4.0.1 [https://pypi.python.org/pypi/pexpect/]
seem to work fine.

Developer setup

Those wanting to modify the source will need a git checkout,
followed by a git-submodule checkout to grab the test-data for the
unittests. So a setup script might look like this:

git clone git@github.com:timstaley/drive-casa.git
cd drive-casa
git submodule init
git submodule update
pip install -r requirements # (grab pexpect)
cd tests
nosetests -sv

Documentation

Reference documentation can be found at
http://drive-casa.readthedocs.org,
or generated directly from the repository using Sphinx [http://sphinx-doc.org/].

Usage

Creating an instance of the drivecasa.interface.Casapy class
will start up casapy in the background, awaiting instruction. Class init
arguments determine details such as where to find casapy, where to write
the casapy logfile, etc.
The drivecasa.interface.Casapy.run_script() and
drivecasa.interface.Casapy.run_script_from_file() commands can then
be used to send casapy a list of commands or a script to execute (through
use of the casapy execfile function). Logging output from the commands executed
is returned for inspection.

You are free to create the casapy scripts by any method you like, but a number
of convenience functions are provided that aim to make this process simpler
and more programmatic. These functions try to adhere to a consistent calling
signature, as detailed under drivecasa.commands.

A Brief Example

Assuming you already have a uv-measurement dataset in uvFITS format,
basic usage might go something like this:

from __future__ import print_function
import drivecasa
casa = drivecasa.Casapy()
script = []
uvfits_path = '/path/to/uvdata.fits'
vis = drivecasa.commands.import_uvfits(script, uvfits_path, out_dir='./')
clean_args = {
 "imsize": [512, 512],
 "cell": ['5.0arcsec'],
 "weighting": 'briggs',
 "robust": 0.5,
 }
dirty_maps = drivecasa.commands.clean(script, vis, niter=0, threshold_in_jy=1,
 other_clean_args=clean_args)
dirty_map_fits_image = drivecasa.commands.export_fits(script, dirty_maps.image)
print(script)
casa.run_script(script)

After which, there should be a dirty map converted to FITS format waiting for
you.

See also

Note that drive-casa is designed as a fairly basic interface layer. If you’re
putting together a substantial pipeline, you will probably want to built up
subroutines and data-structures around it, to keep your code manageable.
For one such example,
see chimenea [https://github.com/timstaley/chimenea], a pipeline for automated processing of multi-epoch radio
observations.

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	drive-casa 0.7.5 documentation

drivecasa API reference

Drive-casa is an interfacing package for scripting of CASA from a separate
Python process (see Introduction to drive-casa).

The package includes several convenience routines that allow chaining of CASA
commands, see drivecasa.commands module.

	drivecasa.interface - Casapy interface class

	drivecasa.casa_env - Shell environment configuration

	drivecasa.commands - Convenience routines for building command lists
	drivecasa.commands.reduction - Data reduction commands

	drivecasa.commands.simulation - simulation commands

	drivecasa.utils - Miscellaneous subroutines

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	drive-casa 0.7.5 documentation

 	drivecasa API reference

drivecasa.interface - Casapy interface class

	
class drivecasa.interface.Casapy(casa_logfile=None, commands_logfile=None, casa_dir=None, working_dir='/tmp/drivecasa', timeout=600, log2term=True, echo_to_stdout=False)

	Handles the interface with casapy.

Simply instantiate, then use member function ‘run_script’ to pass
valid casapy commands (i.e. python function calls) to casapy.

Note

Imported into the root of the drivecasa package to provide convenient
instantiation, e.g:

casa = drivecasa.Casapy()
casa.run_script(['tasklist'])

	
load_subroutines()

	

	
run_script(script, raise_on_severe=True, timeout=-1)

	Run the commands listed in script.

	Parameters:	
	script – A list of commands to execute.
(One command per list element.)

	raise_on_severe – Raise a RuntimeError if SEVERE messages are
encountered in the logging output. Set to False if you want to
attempt to continue execution anyway (e.g. if you want to ignore
errors caused by trying to re-import UVFITs data when the outputs
are pre-existing from a previous run).

	timeout – If -1 (the default, use the class default timeout).
Otherwise, specifies timeout in seconds for this command.
None implies no timeout (wait indefinitely).

	Returns:	Tuple (casa_out, errors)
Where casa_out is a line-by-line list containing the contents
of the casapy terminal output, and errors is a line-by-line
list of ‘SEVERE’ error messages.

	
run_script_from_file(path_to_scriptfile, raise_on_severe=True, command_pre_logged=False, timeout=-1)

	
Run the script at given path.

	Parameters:	
	path_to_scriptfile – Can be relative or absolute, since we apply
abspath conversion before passing to casapy.

	raise_on_severe – Raise a RuntimeError if SEVERE messages are
encountered in the logging output. Set to False if you want to
attempt to continue execution anyway (e.g. if you want to ignore
errors caused by trying to re-import UVFITs data when the outputs
are pre-existing from a previous run).

	timeout – If -1 (the default, use the class default timeout).
Otherwise, specifies timeout in seconds for this command.
None implies no timeout (wait indefinitely).

	Returns:	Tuple (casa_out, errors)
Where casa_out is a line-by-line list containing the contents
of the casapy terminal output, and errors is a line-by-line
list of ‘SEVERE’ error messages.

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	drive-casa 0.7.5 documentation

 	drivecasa API reference

drivecasa.casa_env - Shell environment configuration

Convenience routines for manipulating shell environments.

	
drivecasa.casa_env.casapy_env(casa_topdir)

	Returns an environment dictionary configured for CASA execution.

Args:

	casa_topdir: should either contain the top-level directory containing
CASA installation, or be set to None if casa is already available
from the default environment.

Note

It’s not a bad idea to always specify the casa dir anyway,
so you don’t have to rely on the environment paths being set up already.

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	drive-casa 0.7.5 documentation

 	drivecasa API reference

drivecasa.commands - Convenience routines for building command lists

This subpackage provides convenience functions for composing casapy data-reduction scripts.

While the casapy scripts can be composed by hand, use of convenience
functions helps to prevent syntax errors, and allows for various optional
extras such as forcing overwriting of previous datasets, automatic derivation
of output filenames, etc.

drivecasa.commands.reduction - Data reduction commands

Note

	All the data-reduction command composing functions have a common set of parameters:

	
	script: The list to which the requested commands should be appended.

	out_dir: The output directory to place output files in, using a derived
filename.

	out_path: Overrides out_dir, specifies an output file / directory path exactly.

	overwrite: Deletes any pre-existing data at the output location - use with
caution!

The composing functions return the paths to the files which should be
created once the scripted command has been executed.

	
class drivecasa.commands.reduction.CleanMaps

	A namedtuple for bunching together the paths to maps produced by clean.

Fields: ('image', 'model', 'residual', 'psf', 'mask')

	
drivecasa.commands.reduction.clean(script, vis_paths, niter, threshold_in_jy, mask='', modelimage='', other_clean_args=None, out_dir=None, out_path=None, overwrite=False)

	Perform clean process to produce an image/map.

If out_path is None, then the output basename is derived by
appending a .clean or .dirty suffix to the input basename. The various
outputs are then further suffixed by casa, e.g.
foo.clean.image, foo.clean.psf, etc. Since multiple outputs are
generated, this function returns a CleanMaps object detailing the
expected paths.

NB Attempting to run with pre-existing outputs and overwrite=False
will not throw an error, in contrast to most other routines.
From the CASA cookbook, w.r.t. the outputs:

“If an image with that name already exists, it will in general be
overwritten. Beware using names of existing images however. If the clean
is run using an imagename where <imagename>.residual and
<imagename>.model already exist then clean will continue starting from
these (effectively restarting from the end of the previous clean).
Thus, if multiple runs of clean are run consecutively with the same
imagename, then the cleaning is incremental (as in the difmap package).”

You can override this behaviour by specifying overwrite=True, in which
case all pre-existing outputs will be deleted.

NB niter = 0 implies create a ‘dirty’ map, outputs will be named
accordingly.

Warning

This function can accept a list of multiple input visibilities. This
functionality is not extensively tested and should be considered
experimental - the CASA cookbook is vague on how parameters should be
passed in this use-case.

	Returns:	expected_map_paths –
namedtuple,
listing paths for resulting maps.

	Return type:	CleanMaps

	
drivecasa.commands.reduction.concat(script, vis_paths, out_basename=None, out_dir=None, out_path=None, overwrite=False)

	Concatenates multiple visibilities into one.

By default, output basename is derived by concatenating
the basenames of the input visibilities, with the prefix concat_.
However, this can result in something very long and unwieldy. Alternatively
you may specify the exact out_path, or just the out_basename.

	Returns:	Path to concatenated ms.

	
drivecasa.commands.reduction.export_fits(script, image_path, out_dir=None, out_path=None, overwrite=False)

	Convert an image ms to FITS format.

	Returns:	Path to resulting FITS file.

	
drivecasa.commands.reduction.import_uvfits(script, uvfits_path, out_dir=None, out_path=None, overwrite=False)

	Import UVFITS and convert to .ms format.

If out_path is None, a sensible output .ms directory path will be derived
by taking the FITS basename, switching the extension to .ms, and locating
as a subdirectory of out_dir,
e.g. if uvfits_path = '/my/data/obs1.fits', out_dir = '/tmp/junkdata'
then the output data will be located at /tmp/junkdata/obs1.ms.

	Parameters:	
	script – List to which the relevant casapy command line will be appended.

	uvfits_path – path to input data file.

	out_dir – Directory in which to place output file. None signifies
to place output .ms in same directory as the original FITS file.

	out_path – Provides an override to the automatic output naming system.
If this is not None then the out_dir arg is ignored and the
specified path used instead.

	overwrite – Delete any pre-existing data at the output path (danger!).

	Returns:	Path to newly converted ms.

	
drivecasa.commands.reduction.mstransform(script, vis_path, out_path, other_transform_args=None, overwrite=False)

	Useful for pre-imaging steps of interferometric data reduction.

Guide:
http://www.eso.org/~scastro/ALMA/casa/MST/MSTransformDocs/MSTransformDocs.html

	Returns:	out_path

drivecasa.commands.simulation - simulation commands

Provides convenience functions for composing casapy simulation scripts.

	
drivecasa.commands.simulation.close_sim(script)

	Flush simulated data to disk and close simulator tool (sm.close())

cf https://casa.nrao.edu/docs/CasaRef/simulator.close.html

	
drivecasa.commands.simulation.corrupt(script)

	Apply pre-configured simulated noise via sm.corrupt

cf https://casa.nrao.edu/docs/CasaRef/simulator.corrupt.html

	
drivecasa.commands.simulation.format_astropy_skycoord_as_casa_direction(skycoord)

	

	Parameters:	skycoord (astropy.coordinates.SkyCoord [http://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord]) – Sky position

Returns (str): casa me.direction instantiation expression.

	
drivecasa.commands.simulation.format_astropy_time_as_casa_epoch(time)

	

	Parameters:	time (astropy.time.Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]) – Reference time

	Returns (str): casa me.epoch instantiation expression

	(uses UTC conversion from astropy Time).

	
drivecasa.commands.simulation.make_componentlist(script, source_list, out_path, overwrite=True)

	Build a componentlist and save it to disk.

Runs cl.done() to clear any previous entries, the cl.addcomponent
for each source in the list, and finally cl.rename, cl.close.

cf https://casa.nrao.edu/docs/CasaRef/componentlist-Tool.html

Typically used when simulating observations.

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – List of strings to append commands to.

	source_list – List of (position, flux, frequency) tuples.
Positions should be astropy.coordinates.SkyCoord [http://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord]
instances, while flux and frequency should be quantities supplied
using the astropy.units [http://docs.astropy.org/en/stable/units/index.html#module-astropy.units] functionality.

	out_path (str [https://docs.python.org/2.7/library/functions.html#str]) – Path to save the component list at

	overwrite (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Delete any pre-existing component list at out_path.

	
drivecasa.commands.simulation.observe(script, stop_delay, start_delay=<Quantity 0.0 s>)

	Simulate an empty-field observation’s UVW data with sm.observe

cf https://casa.nrao.edu/docs/CasaRef/simulator.observe.html

	Parameters:	
	stop_delay (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Time-span. Stop observing this
long after the reference time defined by settimes().

	start_delay (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Time-span. Start observing this
long after the reference time defined by settimes().
(Defaults to 0, so the observation starts immediately at the
reference time).

	
drivecasa.commands.simulation.predict(script, component_list_path)

	Use sm.predict to add synthetic source-visibilities to a MeasurementSet.

cf https://casa.nrao.edu/docs/CasaRef/simulator.predict.html

	
drivecasa.commands.simulation.set_simplenoise(script, noise_std_dev)

	Use sm.setnoise to assign a simple fixed-sigma noise to visibilities.

cf https://casa.nrao.edu/docs/CasaRef/simulator.setnoise.html

NB should be followed by a call to corrupt to actually apply the noise
addition.

	
drivecasa.commands.simulation.setauto(script, autocorr_weight=0.0)

	Set autocorrelation weight with sm.setauto.

cf https://casa.nrao.edu/docs/CasaRef/simulator.setauto.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	autocorr_weight (float [https://docs.python.org/2.7/library/functions.html#float]) – Weight to assign autocorrelations

	
drivecasa.commands.simulation.setconfig(script, telescope_name, antennalist_path)

	Configure the telescope parameters with sm.setconfig

cf https://casa.nrao.edu/docs/CasaRef/simulator.setconfig.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	telescope_name (str [https://docs.python.org/2.7/library/functions.html#str]) – e.g. ‘VLA’

	antennalist_path (str [https://docs.python.org/2.7/library/functions.html#str]) – antenna-list config file

	
drivecasa.commands.simulation.setfeed(script, mode='perfect X Y', pol=[''])

	Set feed polarisation with sm.setfeed

cf https://casa.nrao.edu/docs/CasaRef/simulator.setfeed.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	mode (str [https://docs.python.org/2.7/library/functions.html#str]) – choice between ‘perfect R L’ and ‘perfect X Y’

	pol (str [https://docs.python.org/2.7/library/functions.html#str]) – Polarization (undocumented).

	
drivecasa.commands.simulation.setfield(script, pointing_centre)

	Set pointing centre of simulated field of view with sm.setfield.

cf https://casa.nrao.edu/docs/CasaRef/simulator.setfield.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	pointing_centre (astropy.coordinates.SkyCoord [http://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord]) – Field pointing centre

	
drivecasa.commands.simulation.setlimits(script, shadow_limit=0.001, elevation_limit=<Quantity 15.0 deg>)

	Set shadowing / elevation limits before simulated data are flagged.

Runs sm.setlimits
cf https://casa.nrao.edu/docs/CasaRef/simulator.setlimits.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	shadow_limit (float [https://docs.python.org/2.7/library/functions.html#float]) – Maximum fraction of geometrically shadowed
area before flagging occurs

	elevation_limit (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Minimum elevation angle
before flagging occurs

	
drivecasa.commands.simulation.setpb(script, telescope_name, primary_beam_hwhm, frequency)

	Configure Gaussian primary beam parameters for a measurement simulation.

Runs vp.setpbgauss
cf https://casa.nrao.edu/docs/CasaRef/vpmanager.setpbgauss.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	telescope_name (str [https://docs.python.org/2.7/library/functions.html#str]) – e.g. ‘VLA’

	primary_beam_hwhm (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – HWHM radius, i.e.
angular radius to point of half-maximum in primary beam.

	frequency (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Reference frequency for primary
beam.

	
drivecasa.commands.simulation.setspwindow(script, freq_start, freq_resolution, freq_delta, n_channels, stokes='XX XY YX YY')

	Define a spectral window with sm.setspwindow.

cf https://casa.nrao.edu/docs/CasaRef/simulator.setspwindow.html

	Parameters:	
	script (list [https://docs.python.org/2.7/library/functions.html#list]) – casapy script-list

	freq_start (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Starting frequency for
spectral window.

	freq_resolution (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Frequency width of each
channel.

	freq_delta (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Frequency increment per
channel.

	n_channels (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of channels

	stokes (str [https://docs.python.org/2.7/library/functions.html#str]) – Stokes types to simulate

	
drivecasa.commands.simulation.settimes(script, integration_time, reference_time)

	Set integration time, reference time with sm.settimes

cf https://casa.nrao.edu/docs/CasaRef/simulator.settimes.html

The ‘reference time’ defines an epoch, start and stop are defined relative
to that epoch.

	Parameters:	
	integration_time (astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity]) – Time-span of each
integration.

	reference_time (astropy.time.Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]) – Reference epoch.

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	drive-casa 0.7.5 documentation

 	drivecasa API reference

drivecasa.utils - Miscellaneous subroutines

	
drivecasa.utils.byteify(input)

	Co-erce unicode to ‘bytestring’

(or string containing unicode, or dict containing unicode)
Useful when e.g. importing filenames from JSON
(CASA sometimes breaks if passed Unicode strings.)

cf http://stackoverflow.com/a/13105359/725650

	
drivecasa.utils.derive_out_path(in_paths, out_dir, out_extension='', strip_in_extension=True, out_prefix=None)

	Derives an ‘output’ path given some ‘input’ paths and an output directory.

In the simple case that only a single path is supplied, this is
simply the pathname resulting from replacing extension suffix and moving
dir, e.g.

input_dir/basename.in -> output_dir/basename.out

If the out_dir is specified as ‘None’ then it is assumed that the
new file should be located in the same directory as the first
input path.

In the case that multiple input paths are supplied, their basenames
are concatenated, e.g.

	in_dir/base1.in + in_dir/base2.in

	-> out_dir/base1_base2.out

If the resulting output path is identical to any input path, this
raises an exception.

NB the extension should be supplied including the ‘.’ prefix.

	
drivecasa.utils.ensure_dir(dirname)

	Ensure directory exists.

Roughly equivalent to mkdir -p

	
drivecasa.utils.get_box_mask_string(centre_pix_posns, width)

	Get a mask string representing box apertures about (x,y) tuples

	
drivecasa.utils.get_circular_mask_string(centre_ra_dec_posns, aperture_radius='1arcmin')

	Get a mask string representing circular apertures about (x,y) tuples

	
drivecasa.utils.listify(x)

	Ensure x is a (non-string) iterable; if not, enclose in a list.

	Returns:	x or [x], accordingly.

	
drivecasa.utils.save_script(script, filename)

	Save a list of casa commands as a text file

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	drive-casa 0.7.5 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 drivecasa	

 	
 	
 drivecasa.casa_env	

 	
 	
 drivecasa.commands	

 	
 	
 drivecasa.commands.reduction	

 	
 	
 drivecasa.commands.simulation	

 	
 	
 drivecasa.interface	

 	
 	
 drivecasa.utils	

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	drive-casa 0.7.5 documentation

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S

B

 	

 	byteify() (in module drivecasa.utils)

C

 	

 	Casapy (class in drivecasa.interface)

 	casapy_env() (in module drivecasa.casa_env)

 	clean() (in module drivecasa.commands.reduction)

 	CleanMaps (class in drivecasa.commands.reduction)

 	

 	close_sim() (in module drivecasa.commands.simulation)

 	concat() (in module drivecasa.commands.reduction)

 	corrupt() (in module drivecasa.commands.simulation)

D

 	

 	derive_out_path() (in module drivecasa.utils)

 	drivecasa (module)

 	drivecasa.casa_env (module)

 	drivecasa.commands (module)

 	

 	drivecasa.commands.reduction (module)

 	drivecasa.commands.simulation (module)

 	drivecasa.interface (module)

 	drivecasa.utils (module)

E

 	

 	ensure_dir() (in module drivecasa.utils)

 	

 	export_fits() (in module drivecasa.commands.reduction)

F

 	

 	format_astropy_skycoord_as_casa_direction() (in module drivecasa.commands.simulation)

 	

 	format_astropy_time_as_casa_epoch() (in module drivecasa.commands.simulation)

G

 	

 	get_box_mask_string() (in module drivecasa.utils)

 	

 	get_circular_mask_string() (in module drivecasa.utils)

I

 	

 	import_uvfits() (in module drivecasa.commands.reduction)

L

 	

 	listify() (in module drivecasa.utils)

 	

 	load_subroutines() (drivecasa.interface.Casapy method)

M

 	

 	make_componentlist() (in module drivecasa.commands.simulation)

 	

 	mstransform() (in module drivecasa.commands.reduction)

O

 	

 	observe() (in module drivecasa.commands.simulation)

P

 	

 	predict() (in module drivecasa.commands.simulation)

R

 	

 	run_script() (drivecasa.interface.Casapy method)

 	

 	run_script_from_file() (drivecasa.interface.Casapy method)

S

 	

 	save_script() (in module drivecasa.utils)

 	set_simplenoise() (in module drivecasa.commands.simulation)

 	setauto() (in module drivecasa.commands.simulation)

 	setconfig() (in module drivecasa.commands.simulation)

 	setfeed() (in module drivecasa.commands.simulation)

 	

 	setfield() (in module drivecasa.commands.simulation)

 	setlimits() (in module drivecasa.commands.simulation)

 	setpb() (in module drivecasa.commands.simulation)

 	setspwindow() (in module drivecasa.commands.simulation)

 	settimes() (in module drivecasa.commands.simulation)

 Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		drive-casa 0.7.5 documentation »

 All modules for which code is available

		drivecasa.casa_env

		drivecasa.commands.reduction

		drivecasa.commands.simulation

		drivecasa.interface

		drivecasa.utils

 © Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		drive-casa 0.7.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Tim Staley.
 Created using Sphinx 1.3.5.

